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Abstract

An efficient and robust computational scheme is given

for the calculation of the frequency response functions

of a large order, flexible system implemented with a lin-

ear, time invariant control system. Advantage is taken

of the highly structured sparsity of the system matrices

based on a model of the structure using normal mode co-

ordinates. The computational time per frequency point

of the new computational scheme is a linear function of

system size, a significant improvement over traditional,

full-matrix techniques whose computational times per fre-

quency point range from quadratic to cubic functions of

system size. This permits the practical frequency domain

analysis of systems of much larger order than by tradi-

tional, full-matrix techniques. Formulations are given for

both open- and closed-loop systems. Numerical examples

are presented showing the advantages of the present for-

mulation over traditional approaches, both in speed and

in accuracy. Using a model with 703 structural modes,

the present method was up to two orders of magnitude

faster than a traditional method. The present method gen-

erally showed good to excellent accuracy throughout the

range of test frequencies, while traditional methods gave

adequate accuracy for lower frequencies, but generally

deteriorated dramatically in performance at higher fre-

quencies.





1. Introduction

Control of flexible systems has received significant attention in the literature.

To date, numerous techniques, algorithms and procedures have been developed for

design of controllers for such systems ranging from spacecraft and satellites to

aircraft, ships, machines, etc. These flexible systems which are generally infinite-

dimensional are typically modeled using a finite number of generalized coordinates

or modes. Control of flexible systems may become difficult depending on the

number, location, relative proximity, and inherent damping of these modes. The

response of the system to a given disturbance/excitation generally depends on

modal properties (amplitude, frequency, and damping) and the amplitude and phase

content of the disturbance/excitation. In general, two techniques, time domain

analysis and frequency domain analysis, have been developed and extensively

used to analyze and characterize the input/output behavior of linear time-invariant

systems including flexible systems. In frequency domain analysis, frequency

response functions (defined as transfer function matrices from inputs to outputs of

the system) have typically been used (usually in the form of magnitude and phase

or Bode plots) in the analysis of linear systems as well as in designing controllers

for such systems. In general, frequency response functions of the open-loop system

are used to evaluate the performance of the open-loop system, and to identify and

quantify needed performance and/or stability improvements at various frequency

bands. The closed-loop frequency response functions are typically needed to insure

that desired performance and stability have been achieved by the control system.

Moreover, frequency-domain specifications such as peak magnitude, bandwidth,

roll-off rate, etc. are often used in characterizing the desired behavior of the system

in the frequency domain (this is known as loop shaping).

In general, the order of the flexible system (as defined by the number of modes

retained in the model) for which open-loop and/or closed-loop analysis is performed

depends on the application considered. For example, if the closed-loop response

of a spacecraft with a low-bandwidth attitude control system is of interest, then a

small set of modes would be sufficient to capture the low frequency closed-loop

behavior of the system. On the other hand, if the response of the flexible system

is desired over a large frequency range or if the control system considered has a

high bandwidth, then a large set of modes (in the hundreds or thousands) may be

necessary to capture the true response of the system.



However, the current techniques for obtaining frequency response functions,
although able to deal with small or medium size systems, have problems in handling
large order systems. A straightforward calculation of the frequency response
function matrix at a single frequency point which is based on the definition of the

transfer function has a computational cost which is a cubic function of the system

size. If this calculation must be repeated for many frequency points, Laub ([1, 2])

presents a technique which has a better average cost. This technique performs an

initial orthogonal transformation of the system which reduces the system response

matrix to upper Hessenberg form. This initial transformation has a computational

cost which is a cubic function of the system size. This technique can then calculate

the frequency response function matrix at each frequency point at a cost which is

a quadratic function of the system size. However, for very large systems (many

hundreds of modes or more), even this is too slow, and a better method is needed.

To this end, this paper describes efficient techniques for the computation of

open- and closed-loop frequency response functions of large order flexible systems.

The proposed techniques are computationally robust and accurate. The closed-

loop frequency response function calculation is novel and constitutes enabling

technology for the frequency domain analysis of large flexible systems. These

techniques take advantage of the sparsity of the flexible systems in normal mode

coordinates and reduce the computational cost from a quadratic function of the order

of the system to a linear function. A fringe benefit of these faster computational

techniques is an improvement in accuracy. The decoupling of the calculations

involving each structural mode not only makes the calculation faster, but also

means that lower order, better conditioned linear systems are being solved; and this

improves accuracy. Numerical examples are presented showing the advantages of

the present formulation over traditional approaches, both in speed and in accuracy.

The present paper expands on the authors' previous work [3].

Symbols

.4

4i

generic matrix

k × L control system state matrix

2p × 2p plant state matrix for first-order model, see Equation (3)

2 x 2 diagonal block i of A_ 1 _< i _< p; see Equation (4)



.4

Bc

B_

B_u

b

b!j )

C_C

C'.

C pr

[--,pr

t,=,pr
'k.-,f. I

(2p + r) x (2p + r) system matrix of the system which combines

both the plant and the controller

k x f matrix of tracking error (resp., reference input) influence on

closed-loop (resp., open-loop) control system states

2p x m matrix of control input influence on first-order model states,

see Equation (5)

2p x g matrix of disturbance input influence on first-order model

states

any of the block matrix columns in Equation (31)

generic scalar or vector

row i of matrix B_

1. x k matrix of control system state influence on negative of control

input vector

f x n matrix of influence of states of second-order physics based

model on measurement output

f x p matrix of influence of modal model states on measurement

output

(i, j) element of matrix C'p

f x n matrix of influence of state rates of second-order physics

based model on measurement output

f x p matrix of influence of modal model state rates on

measurement output

(i, j) element of matrix Cr .........

f x 2p matrix of influence of first-order model states on

measurement output, see Equation (6)

l x 2p matrix of influence of states of first-order model with input

feedthrough on performance outputs

l x t_ matrix of influence of state accelerations of second-order

model on performance output

1 x p matrix of influence of modal model state accelerations on

performance output
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P

_,pr
P

f,pr

,pr
r

._fl"

c_pr
2

C

D

D

D pr

DPr
It'

N

D

d

ELI(. )

f
G

I x. matrix of influence of states of second-order model on

performance output

l x p matrix of influence of modal model states on performance

output

l x _ matrix of influence of state rates of second-order model on

performance output

I x p matrix of influence of modal model state rates on performance

output

l x 2p matrix of influence of states of first-order model with

acceleration term on performance outputs

1 x 2p matrix of influence of state rates of first-order model with

acceleration term on performance outputs

generic input influence matrix of a linear system

n x _ damping matrix of second-order physics based model

p x p damping matrix of modal model

1 x m feedthrough influence of control input on performance outputs

in first-order model with input feedthrough

I x g feedthrough influence of disturbance input on performance

outputs in first-order model with input feedthrough

generic feedthrough matrix of a linear system

m x 1 input noise/distrubance vector

(21) + k) x (2p + k) matrix .21 - .4

2p x 2i) upper left submatrix of E(s) : : _- :

2p x k upper right submatrix of E(s) -

k x 2p lower left submatrix of E(s)

k x k lower right submatrix of E(s)

f x 1 tracking error vector

number elements in measurement output vector

generic matrix output of Matlab function le±f,:



Gjl(.,)

G21(.s')

9

H

I

i

J

K

k

I

M

II

P

(l + f) × (Ju + g) open-loop transfer function matrix of first order

plant model

1 × i, upper left submatrix of G(,s)

1 × g upper right submatrix of G(._)

f × u, lower left submatrix of G(.s)

f × 9 lower right submatrix of G(s)

number of elements in exogenous disturbance vector

u × tu matrix of influence of control input in second-order model

p × r, matrix of influence of control input in modal model

the (i, j) element of matrix/_

" × 9 matrix of influence of exogenous disturbance in second-order
model

P × g matrix of influence of exogenous disturbance in modal model

identity matrix of the proper size to make sense in context

subscript to index the retained modes, 1 _< i _<p

x/Z] -, the imaginary unit for complex numbers

n × n stiffness matrix of second-order model

m x f controller transfer function matrix

p × p stiffness matrix of modal model

number of control system states

number of elements in performance output vector

n x Tr mass matrix of second-order model

P × I) mass matrix of modal model

number elements in control input vector

number of states in second'order model

number of normal modes retained for modal equations

21) x _n matrix (.2.1- A_)-IB_

2 x p submatrix of Q(.s.) containing rows number 2i - 1 and 2i,

l<_i<_p



q

qi

I"

b"

T_

T. 3

tt

U

W

X

Xl1(.*)

X21(. )

X22(. )
3"

T

;l'_t

3' c

Y

ypr

2,

6_

p x 1 vector of modal coordinates

component i of vector q, 1 _< i _< p

f x 1 reference input vector

complex variable used in transfer functions (Laplace transforms)

sampling frequency of a discrete-time system

transfer function from :3 to o, where o E {!1, ypr, e, _u} and

3 {r, d, ,,}

m × 1 control input vector

f × 1 measurement noise vector

generic matrix

9 × 1 exogenous disturbance vector

generic matrix

(21,+ k) x (21,+ k) matrix E(.s) -l

2p x 2p upper left submatrix of X(s)

21, x L' upper right submatrix of X(._')

k x 2p lower left submatrix of X (s)

h x k lower right submatrix of X (s)

rl x 1 position/attitude vector of second-order model

generic scalar or vector unknown in a linear equation

generic approximate scalar or vector solution to a linear equation

k x 1 vector of control system states

21, x 1 state vector for first-order model, see Equation (2)

generic matrix

f x 1 vector of measurements outputs

l x 1 vector of performance outputs

generic vector

k x k matrix Ez2(.s)- E21Elll(.s')E12

symmetric relative error function

generic complex number



i1

I

oi

open-loop damping ratio of retained mode i, 1 _< i _< p

generic complex number

scalar comparison magnitude for generic scalar .r

7_ × p matrix whose columns are the 1) retained mode

shapes[ol 4)2 ... O/j]

, × 1 mode shape vector of retained mode i, 1 _< i _< p

a scalar or vector of frequency values

open-loop frequency of retained mode i, 1 _< i _< p





2. Mathematical Formulation

2.1. Second-Order Modal Equations

The dynamics of a typical linear, time-invariant flexible system may be ex-

pressed in a second-order model as

3I.i" + D,i'+ K,_' = Hu + H,_, w + Hd

y = C'l,,r + C,.2

ypr ..-,pr ,-',pr • .._pr ..-- L.p :Cq-C r it'n t-L, a a'

where 3I, D, and K are the I_ x t_ mass, damping and stiffness matrices, respec-

tively; a is the r_ x 1 position/attitude vector; u is the m x 1 control input vector;

w is the g x 1 exogenous disturbance vector; d is the m x 1 input noise/disturbance

vector; H is the _ x m control input influence matrix; and H,,, is the t_ x g ex-

ogenous disturbance influence matrix. The vectors y and j_r are, respectively, the

f x 1 measurements output vector and the l x 1 vector of performance outputs; Cp
(-,pr i..pr i.-,prand C,, are f × n measurement output influence matrices; and ,_.p , ,-.r , and ,..o

are 1 × u performance output influence matrices.

If the second-order system is transformed into normal mode coordinates, and p

of the normal modes are retained to capture the relevant dynamics of the structure,

then the system equations may be written in a modal form as

flii + DO + Kq = ft, + fl,,,w + ftd

,J = C ,q+ (:,,4
(U4gpr = t-._ q+ +Ca q

where fI, /), and/_" are the p x p modal mass, damping, and stiffness matrices,

respectively; q is the p x 1 vector of modal coordinates; and H and H,, are the p x m

control input and the p x g disturbance influence matrices in modal coordinates,

respectively. The matrices C'p and C',. are f x p measurement output influence
F,P r F,P r F, Prmatrices in modal coordinates; and ,_.p , ,_r , and ,-o are I x p performance

output influence matrices in modal coordinates.

It is assumed that the mode shapes are normalized with respect to the mass

matrix, and modal damping is assumed. This means that 3-I = I, /) =

11



• 2 } where wi anddiag{2(l_.'i, 2£2_-'2 .... ,2(pWp}, and/_ = diag{w_, w_ .... ,wp

(i are the open-loop frequencies and damping ratios.

The control input and disturbance influence matrices are given by:

if] = (_ T H

H., = d_T H,.

The measurement and performance output influence matrices are given by:

C',,= c',,¢, • = c',.¢,
#:p_= c'p"cb • C'_'_ f,p, Cprep,_p _p - , = Cp"@ : ,_.<,=

The columns of matrix ¢ are the p retained mode shapes:

@= [oi 62 ... csp]

2.2. First-order Form of Equations

The second-order modal equations may be rewritten in a first-order form as

:i:_ = A_.rs + Bsu + Bu, w + B_d

y = C'_,r_ (1)

..-,pr CPr ?ypr = L i .r_ + 2 " c.

The vector .r_ is the plant state vector whose components are

ql

ql

q2

q2
.r_ = . ,, (2)

qp

• qp ,

and the vectors y and Ypr are the same plant measurement and performance output

vectors as before. The matrix .4_ is the plant state matrix and has the form

0 0]
.4_ ... 0 (3)

-_[_ --- : : •,,

L;) o ....-_!,'

12



where

.4'_ = [0 1 ] (4)"
The matrix B_ is the control input influence matrix, formed by setting its odd-

numbered rows to zeros and using the rows of/-1 for its even-numbered rows:

0 0 ...... 0

/tll -/_12 ...... [_lm

0 0 ...... 0

/ 21 -0 2 ...... tq2,,,
; _ ",,

: _" • :
. •

0 0 ...... 0

./_rp, _Oz,2 ...... /-_rp,,

(5)

in which fIij, for example, represents the (i. j) element of matrix/-St. The matrix

B,, is formed from /q_,, in the same manner.

The measurement output influence matrix, C_ is defined by setting the odd-

numbered columns of C'_ to the columns of C_'p and the even numbered columns
of C's to the columns of (-_,'r

('p(1,1) _',(1,1) (='p(l,2) (mr(l,2) ...... (='t,(1,p) Cr(i,l')"

_ 9 . .....Cp(_,l) Cr(2,1) (_p(2,2) (='r(2;2) ('p(2, p) Cr(2, p)

• ; : ; ", ; •

('_,(f, 1) (',,(.f,_) (5,(.f,2) 0rff,2) ...... c,_,(.l,p) (;.(.f,p)_

(6)

Here, C_'p(i,j) and C',.(i,j) denote the (i,j) element of matrix Cp and C.r, respec-
g-,1) r t,=q_r tm pr

tively. "-'1 is defined from ,_.p and ,-_r in the same fashion. C.__r is defined

by setting the odd numbered columns of C._ r to zeros and the even numbered
columns of f,pr -pr"-2 to the columns of Ca •

By substituting the first equation of (1) into the third, the acceleration term can

be replaced by feedthrough:

.?s = A_J'_ + Bsu + B,,w + Bsd

Y = Cj_ (7)

ypr = CPr,r_ at - oPr u at- D_Y u, + DPrN

The performance output influence matrix is given by

Cpr "- "-_l(-q_rnt- CPr As,

13



while the performance feedthrough matrices are

1.2_ _ ; ]-)pr ¢_pr BD pr -- C rB_ --t_, = "-2 "'"

Notice that if there is no performance acceleration output (C'Ja'' = 0), then

O_ 'r 0 and C._'r 0, so both feedthrough matrices, DP" and D pr= = ,, , are zero.

2.3. Control System Equations

In this paper, it is assumed that the structure is controlled by a linear time-

invariant control system. The model of a linear time-invariant control system for

a typical flexible structure may be written as

,i'c = Ac:rc + B(._ _

, = C,..rc (8)

('-- r--l J-- V

where .c,. denotes the k x 1 vector of control system states; e denotes the f x 1

tracking error vector; r denotes the f x 1 reference input vector; i, is the f x 1

measurement noise vector; Ac, Be, and Cc represent the k x k control system state

matrix, the L x f input influence matrix, and the m x k output influence matrix,

respectively; and y is the measurement output vector which was defined in the

previous section. Note that the control system equations, as represented by Eq.

(8), do not include any feedthrough terms. However, if there are feedthrough terms

present in the control system, then augmented dynamics (with roll-off filters) are

used to reduce the control system equations to the form given in Eq. (8). This

procedure is described in [4]. If the system is open-loop, then t, is zero and y is

not fed back; so (:' is r, and the control system model becomes:

:'_'c= Ac:rc + Bcr (9)
II : C_(.;l'c

2.4. Equations for Open-Loop Configuration

The block diagram of the system for the open-loop configuration is shown in

Figure 1.

14



d I LV
pr

Y

Figure 1. Block diagram for open-loop configuration.

Here, If(s) denotes the controller transfer function matrix, which is defined for

all complex s not in the spectrum of Ac as

1((._) = C'c(._[ - Ac)-lBc (10)

The plant transfer function matrix G(s) is partitioned according to inputs, d and w,

and outputs, ypr and y, and is defined for all complex ._ not in the spectrum of .4_ as

with

a(._.)= [al_(._) el2(.,)][.a21 (.s')G22 (.s)

Gll = cPr(sI - -4_)-1B_ + D pr

' -- _ D prGr2 = cpr(._I A_)-IB., +--.,

G21 = C_(,_I - &.)-I B o

G22 = C,(.sI- A,)-lBw

(11)

(12)

The state-space models of the controller and plant, given by Eqs. (7) and (9),

are combined to give

(13)

(14)

!]pr = [cpr DP,.Cc ] :,'_ + [0 D pr D_Y] d (15)

"Fc (U

tt = [0 C. ,,.. (16)

15



For the open-loop system model in Eqs. (13)-(16), there are three possible inputs

to the system (r, d, ,,) and three possible outputs (y, 9 pr, u). Therefore, a total of

nine transfer functions can be defined for the system, with each transfer function

corresponding to an input/output pair. Irrespective of the choice of the input/output

pair, the computation of open-loop transfer functions from Eqs. (13)-(16) would

of matrix E(s) -- (._I- .4) at each frequency points = j_',
/ k

involve the inverse

where .-1 is the system matrix of the combined plant model and the controller,

given by

Partition E(.s) conformally:

- -Ell(.s') El2 ] [sI-A_ -B_C'c] (17)0 E2e (._) = 0 ._I - Ac

Set X(_.) = E(s) -l and partition conformally:

EI2]IX22(s) = 0 E22(._') (18)

Then, from matrix inversion lemma, one has

Xll(S) = Et-ll(s)

X l2 ( ._) = - E-(ll ( .s)E12 EY221(.'_)

X21(. ) =0

X22(. ) = )

(19)

2.5. Open-Loop Transfer Functions

Formulae for the nine open-loop transfer functions are derived in this section.
Each transfer function formula is stated either in terms of the plant and controller

system matrices and terms derived from them in the previous section, or as a simple

alteration to a previously derived transfer function. The next section will address

issues of computational efficiency.

16



Subscripts are used in the following to relate input connections to output

connections. The first subscript indicates the output and the second subscript

indicates the input.

The transfer function from the tracking command, r, to measurement output,

y, is given by:

[S11(._)
Zu,.(._)= G.)_(._.)I((._.)= It; 0][X2_(._.)

= C_E/ll (._)B_C',.EYe21(s)B,.

X2.2(._) B,. (20)

The transfer function from the input noise/disturbances,

output, Y, is given by:

d, to measurement

[x2t(._) x.22(._) o (21)

• The transfer function from the exogenous disturbances, u,, to measurement

output, Y, is given by:

Ta,,(.s) = a22(.s.) = C'_E-_11(s)B,,, (22)

• The transfer function from the tracking command, r, to performance output,

yps, is given by:

rup,r(.s" ) = C11(s)IC(.s') = [C pr Dprcc]IX.)I(.s)

_ np_,--, ,- (s)Bc (23)- 6'P_XI2(.s)Bc + L, ,-.._-_22

= -CP"E-_II(.s.)Et2E221(._.)Bc + DP_C,_E2.21(s)B,.

= CP"E-_ll(a.)B, CcE7221(s)B_ + DP"C'cE221(.s)Bc

• The transfer function from the input noise/disturbances, d, to performance

]X21(,_') X22(*') '-" +DPr
(24)

output, tJpr, is given by:

TW,I(.s') = C1_(._') = [cpr DP"Cc ]

= cPrXI1 (.5")B_ + D pr

= cPrEll I (s)Bs + D pr

17



• The transfer function from the exogenous disturbances, w, to performance

output, ypr, is similarly given by:

Tap_,,(s) = Gt.2(s) = CP"E?II(s)B., + D!ff (25)

• The transfer function from the tracking command, r, to control input, u, is

given by:

T,,.(s) = I(( s) = C'cEg2.21( s )Bc (26)

• Because the configuration is open-loop the transfer functions from the input

noise/disturbances, d, and, the exogenous disturbances, ,c, to control input, u,

are given by T,d = 0 and T,_t, = 0.

Now, using one of the equations (20)-(26) to calculate one of these transfer

functions, the frequency response function matrix of the open-loop system is

"_; taking on the user-specifiedevaluated for various values of s - g , with _.,

frequency values. The open-loop gain and phase plots (Bode plots) may then

be computed directly from the frequency response function matrix, if desired.

2.6. Efficient Calculation of Open-Loop Transfer Functions

If these formulae are used to calculate transfer functions for a large order

flexible system, with values of p in the hundreds or thousands, then the presence

of the expression E_-II(s) effectively precludes the use of full matrix techniques,

both for reasons of computation time and accuracy. Fortunately, the matrix

Ell(S) = sI - +4+ is block diagonal with 2 x 2 block diagonal elements. It is

a common engineering practice to exploit this sparsity structure for computational

efficiency.

It is noted that the expression E_-I l (s) always occurs in one of the combina-

tions EllI(S')B_ or E_lt(s)B,_,. Additional computational efficiency comes from

exploiting the fact that the odd numbered rows of matrices B_ and Bu, are zero

(see equation (5) and the following remarks). The following illustrates how the

sparsity is exploited.

Assume s is not in the spectrum of A_. From equations (3) and (4), it follows

that (sI- As) -1 is block diagonal with the i-th block being

sI-_ ._ s"2 + 2(i_.,'is + _,2; _w 2 s
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If the row i of B, is denoted by b!,i) if Q(._) is used to represent (._I - A,)-IB,

and if Q(.s) is partitioned as

[Q,(._)]

Q(._.) /Q_:(_)[_ (28)
LQp(-_)J

where each partition matrix Qi(._) is a 2 x m matrix, then Q is calculated using
the formula

Ft,!?;)]Q,(._)= 1/ ._.2+ 2¢;_.;._+ _._ L._zL2,)• , - 1.2,_'( _'_ .... ,,. (29)

A similar approach is followed in the computation of E_-II(.s)B,,.

The term E_-21 (.s.) = (.7./- Ac)-l appears in several of the transfer function

formulae, always in the context C'cEf21(.s.)Be. The k× L' matrix .sI- Ac is

generally a full matrix. Consequently, the computation of the controller transfer

function C'eE_221(.s)B_. is achieved through conventional approaches (see, e.g., the

work of Laub [1, 2]).

Most of the open-loop transfer function formulae contain one of the expressions

C'_EIlI (.s')B.,, C'sElll ( ._')B,,, Cpr EIII ( ._)B.,, or CPr EIII (._.)B,,. By comparing the

FLOP (FLoating point OPeration) count for alternate ways of computing one of

these expressions, the computational advantage of utilizing the block diagonal

structure of E_] 1(.7) can be quantified.

Observe that

O21(._) = C_E_-II(._')B_ = C_Q(,_.)

The standard, full matrix way to calculate Q(_.) would involve first performing

an LU decomposition of sI- As, followed by a backward and then forward

solution of the triangular systems of equations using the columns of B_ as right-

hand sides. The FLOP count for this is O(1,3) + O(p2,n), so G21(_') is computed

in O (p.3)+0(1)2,,,) +O(pfm) FLOPS. Thus, in the typical case where system size

is much larger than the number of disturbances, the calculation time per frequency

point is a cubic function of system size.

If this calculation must be repeated for many values of s (a typical scenario), the

technique of [1, 2] has a better average FLOP count. An initial O (1).3) orthogonal
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transformation must be done once; then for each .% Q(s) is calculated in O(p2m)

FLOPs, so G21 (,s) is computed in O (p2m) + O(pf.l) FLOPs. Thus, if the number

of frequencies for which this calculation must be repeated is large enough (see

the discussion in the last paragraph of Appendix A), the O (p3) start-up cost is

distributed over the frequency points such that the calculation time per frequency

point is a quadratic function of system size.

When the calculation is done as in equations (28) and (29), the flop count is

O(pm), so G21(._') is computed in O(pfJn) FLOPs. Thus, the calculation time per

frequency point is a linear function of system size. This represents a substantial

savings, particularly when a large number of modes is necessary to capture the

dynamics of the system.

2.7. Equations for Closed-Loop Configuration

The block diagram of the system for the closed-loop configuration is shown

in Figure 2.

r
a r

Figure 2. Block diagram for closed-loop configuration.

The closed-loop system is more complicated. Using equations (7) and (8) and

defining

4 - ' (30)
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the closed-loop dynamics of the controlled structure may be written as:

{}UPr=[cpr DP_C_] ,r. +[0 D p_ D p_ O] d

,-'=[-Cs O] .,:. +[I 0 0 -I] d
H'

(31)

(32)

(33)

(34)

For the closed-loop system model in Eqs. (31)-(35), there are four possible inputs

to the system (r, d, ,,, _,) and four possible outputs (9, ypr c, ,). Therefore, a total

of 16 transfer functions can be defined for the system, with each transfer function

corresponding to an input/output pair.

Irrespective of the choice of the input/output pair, the computation of closed-

loop transfer functions from Eqs. (31)-(35) would require the inverse of matrix

.sT- .-_ at each frequency point s = j_. Observing the closed-loop state matrix .4,

it is obvious the block triangular form of the open-loop configuration has been

destroyed by the coupling generated by the feedback connection of plant and

the control system. However, the initial sparsity of the plant state matrix .4_

is still intact. This sparsity is exploited to develop an efficient method for the

computation of closed-loop frequency response function matrix of the controlled

flexible structure. If sparsity is not exploited and many structural modes are

modeled Q) is large), it follows that a large computational effort would be required

to calculate the closed-loop frequency response function matrix, since this would

involve the computation of the matrix term (.s.[- ._-1 _B, where ._I- .4 is of
\ J
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order 2p+ L'. Here,/7 represents one of the block columns in equation (31) and the

computation must be repeated for each value of ._ -- j,: for all desired frequency

values _,.

In the following it is assumed that .s is not in the spectrum of .4 (necessary for

the transfer function even to be defined) and it is further assumed that .s. is not in

the spectrum of Ao. This further assumption is needed to enable some algebraic

manipulation, and should not adversely affect the applicability of the following

results. On the one hand, since .4_ is the plant state matrix for a linear model of

a flexible structure, its eigenvalues occur either at 0 (corresponding to rigid body

modes) or in the left half plane (corresponding to damped flexible modes). On the

other hand, it is anticipated that these results will be used to compute closed-loop

transfer functions for ._ = j_' with _' > 0. Thus, excluding the eigenvalues of .4_

from the domain of applicability of these results does not impact the anticipated

usage.

The matrix term .s[ - .4 may be written as

(36)

Introduce the notation:

(37)

The assumptions which have been made about 6 insure that the inverses in (37)

exist, as does Ell I . Rewrite (37) as:

[Xll XI2][EI1 E 2] =I (38)X21 X22 LE21

Expanding the lower left block of (38) and solving for X21 gives X21 =

-X.e.eE.21 Ell 1. Expanding the lower fight block of (38), substituting the previous

expression for X21, and factoring gives X22A = I, where A = E.2.2- E.21E-{11 El2.

This demonstrates that A is invertible, and justifies the application of the block

matrix inversion formula given in [5, page 898] to find the inverse of the block
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matrix in Equation (37):

A = E.2.2 - EeIE_IIE1.2

Xlj = E_-I 1 + E(l _EI.2A- IE'21E-(I 1

X_2 = -E_I E_2'_X -1

X.21 = - A-1E2j E-(I 1

X22 -"- ,.__-1

(39)

2.8. Closed-Loop Transfer Functions

Formulae for the sixteen closed-loop transfer functions are derived in this

section. Each transfer function formula is stated either in terms of the plant and

controller system matrices and terms derived from them in the previous section, or

as a simple alteration to a previously derived transfer function. The next section

will address issues of computational efficiency.

• By combining information from equations (36) and (39), it is seen that the term

,._k(s), which is used in the computation of all of these transfer functions, can

be calculated by the formula:

A(.5.) --- _22(._) + BcCrEIII(.5)BrCc (40)

The transfer function from the tracking command, r, to measurement output,

y, is given, with the aid of Eq. (37), by:

Ty,.(._) = ([ + G21(._)K(._.))-_G21(._)I((._ ,)

[X21(.s) X22(._) Bc (41)

tO measurement

(42)
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The transfer function from the exogenous disturbances, u,, to measurement

output, y, is given by:

= C'511(,_)B.,
= - C E-_ )B_CcA-I( )B.,C6EFll('s')/_. ' _ 11 (.s" s')//cCsE/ll(.s

(43)

The transfer function from the measurement noise, t,, to measurement output,

9, is given by:

T_,,(._')= -T,j,.(._) (44)

• The transfer function from the tracking command, r, to performance output,

lPr , is given, with the aid of Eq. (37), by:

T,F,.(._)= a_l(.,)(Z + G_(._)IC(._))-1IC(._)

_-[C pr Dprce][ X11('_) "\-12('5')][ 0 ][x2_(._) x22(._) _.
= cprx12(s)Bc + Dprccx22(.s')Bc

= -cPrEIll(.s')F12_-I (.s')Bc + Dprcc_-l(.s)Bc

= CPrE_II(.s)BsCcA-I(.s)Bc + Dprc_&-I(s)Bc

(45)

• The transfer function from the input noise/disturbance, d, to performance output,

ypr, is given, with the aid of Eq. (37), by:

G,.d(.S) = GL_(.s)(I +/£(.s)G21(_)) -1

-[CP_ Dv_G]LXel(._) x22(._)
= cPrxI t (.s)B_ + DPrCcX21 (.s')B_ + D pr

C/'"Elll (s)B_ c"rEIll(s)B_{Ce A-1. ''c • ,}

(._)B,C.,E,_ (._)B,} +DPr ( Cc&- I , - t DPr
t.

(46)
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The transfer function from the exogenous disturbance, w, to performance

output, ypr, is given, with the aid of Eq. (37), by:

TF,,(._) = G12(._)(I+ I((._.)G2_(._))-_

DPrC_][X21 ._) X22(s)

= cprElll(.s)B,,- C.'PrElll(s)Ba{Cc,.k-l(.s.)BcC_Elll(a.)B,,,}

- D p' Cc_-J(. )B_.C_E_I (.s.)B,, +

(47)

The transfer function from the measurement noise, v, to performance output,
9 pr, is given by:

_r,F,,(._.)= - r_,_,r(.7) (48)

The transfer function from the reference command, r, to reference error is

given by:

T_,.(.s) = [- Ty,.(.s) (49)

• The transfer function from the input noise, el, to reference error, e, is given by:

T_d(._) = -r,jd(._) (50)

• The transfer function from the exogenous disturbances, w, to reference error,

c, is given by:

%,,,(._)= -r,j.,(._.) (51)

The transfer function from the measurement noise, v, to reference error, e, is

given by:

(52)

The transfer function from the tracking command, r, to control input, u, is

given, with the aid of Eq. (37), by:

Zur(.5") -- I((_')(I + G21(.b')f((.5")) -1 : [0

(53)
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The transfer function from the input noise/disturbance, d, to control input..,

is given, with the aid of Eq. (37), by:

C',.] 0

=-C,.X21(.s)Bo =-CcA-I(._)B_.C_Ell (._.)B_

(54)
The transfer function from the exogenous disturbances, .,, to control input, u,

is given, with the aid of Eq. (37), by:

Tu,,( .s') = -[((.s)( I + G21 (.s)/(( .s))- 1G22 (s)

= [0 c',] (55)

= -C'cX21(._-)B,, = -Cc=.k-l(s)BS_Ell (._.)B,,

The transfer function from the measurement noise, t,, to control input, u, is

given by:

= (56)

Now, using one of the equations (41)-(56) to calculate one of these transfer

functions, the frequency response function matrix of the closed-loop system is

evaluated for various values of s -- j.J, with _ taking on the user-specified

frequency values. The closed-loop gain and phase plots (Bode plots) may then

be computed directly from the frequency response function matrix, if desired.

2.9. Efficient Calculation of Closed-Loop Transfer Functions

With the transfer functions written in this form, the following computational

efficiencies are observed:

[] Since EL1 = .s./--A.s, and B_ and B., have zeros in the odd numbered rows, the

terms E-(IIB_ and .EH1B., can be computed using the techniques presented for

efficient computation of the open-loop transfer function (see the §2.6 through

equation (29)). Achieving this efficiency was the entire point of the algebraic

manipulations done in achieving the forms of the transfer function formulae

given in the previous sections.

[] The computation of A-lBc is done as a full matrix computation (a possible

improvement to this is presented in Appendix A), but since A is of the same
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order as the control system, which is usually small compared to the order of the

analysis model of the plant, it should not be very costly to compute. Following

accepted contemporary numerical analytic practice, A - lB,. should be computed

by solving systems of linear equations using ,_.k as the coefficient matrix and

the columns of Bc as right hand sides ([6, Chapter 3]).

[] The expected shapes of the matrices and the exploitation of common sub-

expressions make it advisable not to precompute some of the matrix products

in equations (40)-(56) which are independent of the frequency parameter s (if

X is a tall, skinny matrix, and )" is a short, wide matrix, so that IT" = .\']"

is both tall and wide; and if - is a vector, then calculating X(]-) is cheaper

than calculating II'z).

[] Common sub-expressions, such as those mentioned in the previous items and

those enclosed in braces in some of the transfer function equations are computed

once per frequency, saved, and reused. Some of the intermediate results formed

in computing A can be reused in many of the transfer function formulae.

[] If there are no acceleration sensors in the performance outputs, so that the
feedforward matrices D pr and D pr,, are null, the software implementations of

these computations may bypass any terms in the transfer function formulae

which contain either of these matrices.

The closed-loop system matrix A (equation (30)) has order 21, + k.

discussion of the open-loop calculation, if Typ_,,(._.) is calculated as

Typ, w (.s') [C pr DprCc](.s'f-._)-l[Bo_ ]
= ,, + D{; _,

As in the

using standard full matrix techniques, the computation takes O((21, + k) 3) +
\ /

0((21, + k)29) + O((21) + L')Ig) FLOPs per frequency point. Using the technique

l

of [1] and [2], if the number of frequency points for which the calculation is to

be repeated is on the order of 21)+ k or more, then TyvT,,(._.) can be calculated
/

in O ((21) + k)29) + O((21)+ L.)l.q) FLOPs per frequency point. Again, these are

\

cubic and quadratic functions, respectively, of the system size. By counting FLOPs

resulting from subroutine calls and DO loops in the FORTRAN software used to

implement the calculation of equation (47), it is determined that Typ,.,,(.s) can be
calculated in

O(p(Ig + gf + .fro + .q,,,) + k 3 + k_(g + ,7_)+ k(gf +.f,n + g,,) + lq,_) (57)

27



FLOPs per frequency point. Again, this is a linear function of the number of

retained modes p.

In order to evaluate the significance of Eq. (57), it is useful to recall the

meanings of the variables in it, and to take note of their expected relative sizes

in the applications to which this theory is intended to be applied. The number of

retained modes p could be the largest by far of these variables, with values ranging

even into the thousands. The number of performance outputs I and the number

of controller states k are of moderate size, perhaps as large as multiples of ten.

The number of disturbance inputs 9 is much smaller, perhaps as large as l0 or so,

while the number of measurement outputs f and the number of control inputs to

the plant Jr_ are even smaller, typically being in the low single digits. Therefore,

the terms involving p should be looked on as the dominant part of Eq. (57). Of

the remaining terms, the O (k 3) term is the next most dominant.

If a FLOP count expression were to be developed for another of the transfer

function formulae, it would differ in some details. However, two important points

would remain the same: p would appear linearly, and, of the terms which do not

depend on p, the O (/,.3) term would continue to appear and dominate.

It is therefore interesting to note that, if the number of frequency points at

which the transfer function is to be evaluated is large enough, the term O(k 3)

in this last expression, which comes from performing a LU decomposition on the

matrix _, can be reduced enough to become part of the terms which are of lower

order in k. This reduction is based on applying the technique of [1, 2] to E22 and

making use of the observation that the other term in the definition of A is, in the

expected applications, of low rank. This is seen by observing from Eq. (40) that

the rank of the term added to E22 to get ,_k is at most rain (f, m). Details of this

alternative calculation are given in Appendix A.

2.10. Discrete Systems

The computational procedure outlined for the calculation of open-loop or

closed-loop transfer functions of the system extends to the case wherein the

plant and the controller are represented by linear discrete-time systems with little

adjustment. These adjustments and considerations are:

, i-)Pr
1. The plant state and influence matrices, .4s, B_, B_,, C_, C pr, D pr, and _u,,

which have been used in the computation of open-loop or closed-loop trans-
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fer functions, take their discrete-time forms (instead of their continuous-time

forms).

2. The matrix Ell -- .s.I- _4_ continues to keep its block diagonal form with

2x2 block diagonals. However, the special form of Eq. (27) for the inverse of

the 2x2 block diagonal elements does not hold anymore. Instead, the general

inverse for a 2x2 matrix is used.

3. The influence matrices B_ and B,, do not possess the property of having zeros

in the odd numbered rows; they are full matrices with no inherent sparsity. This

means that, in the computation corresponding to Eq. (29), both an odd numbered

and an even numbered row of the "B" matrix are involved in the computation,

as opposed to only an even numbered row for the continuous-time case.

4. The frequency points ._ which are used in the computations are computed from

s = _.i,,'T_

where ,_, are the desired frequencies in rad/s and To denotes the sampling

frequency of the discrete-time system.

2.11. Software Implementation

The algorithms developed in this paper has evolved over time. In the initial

work as reported in [3], only the formulae for the open-loop and closed-loop transfer

functions for performance output as a function of disturbance input, called T,jpr,,,

in this paper, were developed; and these only for the continuous case. Software

capabilities also evolved during this time. The initial implementation of software

to evaluate Tu,_, is distinctly different from the current implementation. The

techniques suggested in Appendix A have not yet been tried out in software.

2.11.1. Initial Implementation

The evaluations of the open- and closed-loop transfer function T u,r_, were

originally implemented using MATLAB function M-files (MATLAB, a product of

The MathWorks, Inc., is "a technical computing environment for high-performance

numeric computation and visualization" [7, page i]), and as FORTRAN 77 code

which is then accessed through MATLAB using the MEX-file external interface

facility. The M-files have the advantage of being relatively easy to write and of

being portable to any computer capable of running MATLAB. The FORTRAN

MEX-files are more labor intensive to program, but for those computer systems
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which are capable of compiling them, they perform the calculations faster. This

is illustrated in §3.

The M-files contain straightforward implementations of the calculations pre-

sented in the open- and closed-loop formulae for TypT,,. The FORTRAN source

code for the MEX-files uses the Basic Linear Algebra Subprograms (BLAS, [8-14])

to perform vector-vector, vector-matrix, and matrix-matrix operations. In addition,

LAPACK ([15]) subroutine zG_.sv, a complex double precision linear equation

calculate -X -I (B_C'_E-(II(._)B,,). It is in this form that thesolver, is used to
\ /

transfer function evaluations are implemented in version 1 of the software package

PLATSIM [4], which is available from COSMIC (LAR-15287).

2.11.2. Current Implementation

Implementing the full scope of the computational formulae developed in this

paper was a task of significantly greater magnitude than was involved in the initial

implementation. In the continuous case, there were seven nontrivial open-loop

transfer functions and 16 closed-loop transfer functions for a total of 23. Extending

the work to the discrete domain added another 23 transfer functions. Fortunately,

there were some similarities in the forms of the calculations between some of the

transfer functions.

Exploiting these similarities in form, it is possible to calculate all seven

continuous open-loop transfer functions using just four function M-files, one

executive routine and three which do the actual calculations. Similarly, the 16

continuous closed-loop transfer functions can be computed using just six M-files,

one executive and five performing the actual calculations. The discrete case uses

the same software structure, so any of the 46 distinct transfer functions can be

calculated using a suite of 20 function M-files.

It would have been a programming task of nontrivial magnitude to render these

46 transfer function formulae in FORTRAN or C code from which MEX-files

could be compiled. Fortunately, by the time this theory had been developed, The

MathWorks, Inc. had developed the MATLAB compiler [ 16]. This is a utility which

translates function M-files into C code which can either be used in stand-alone

applications (with the addition of the MATLAB C math library) or be compiled

into MEX-files.

There are some limitations as to which MATLAB commands can be compiled.

Also, some calculations can be programmed in MATLAB in more than one way,
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such that one program is more efficient as an M-file and another is more efficient

as compiled code. So, slightly different versions of the 20 M-files are maintained

for compilation into MEX-files as opposed to direct execution by MATLAB. These

20 M-files are used to compile four MEX-files; one to perform the computation of

all of the open-loop transfer functions in the continuous time case, one for closed-

loop continuous time transfer functions, and one each for open-loop and closed-
loop discrete time transfer functions. It is in this form that the transfer function

evaluations are implemented in version 2 of the software package PLATSIM [17].
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3. Numerical Examples

A number of numerical examples are presented to demonstrate the efficiency

and accuracy of the algorithm presented in this paper. Execution time comparisons

are made to two standard full matrix methods of calculating the frequency response

function of a closed-loop system and a block elimination method for linear sys-

tems with a multi-row and column boarder. Accuracy assessments are made by

comparing these answers amongst themselves and with answers calculated using

quadruple precision (128 bit) floating point computer arithmetic. Except where

specifically noted otherwise, all software used in this study utilized ANSII stan-

dard double precision (64 bit) floating point computer arithmetic. All tests were

performed on a Sun SPARC 10 workstation.

The data come from a model for the EOS-AM-1 spacecraft used in a jitter

reduction study ([18]). This spacecraft (see Fig. 3) has a diameter of 3.5 m, a

length of 6.8 m, and a weight of 5190 kg.

Figure 3. Schematic diagram of EOS-AM-1 spacecraft.
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The structural model contains 703 modes for a potential 1406 plant states. This

modal model includes all modes with frequencies less than or equal to 200 Hz.

The reason for using such a large flexible model of the spacecraft is to capture the

diverse dynamic characteristics of the disturbances that act on it. The frequency of

disturbances can vary from orbital frequency, such as gravity gradient, to sub-Hertz

frequency, such as mass imbalance on scanning mirrors, to frequencies of more

than 100 Hz, such as are generated by the cryocoolers.

There are 6 rigid body modes and 697 flexible modes ranging from 1.24 to

1564 radians per second. The 6 measurement outputs are the spacecraft's roll,

pitch, and yaw attitudes, and their rates, at the spacecraft navigational unit. The

three actuators are x-, y-, and z-axis torquers. The control system has 39 states.

Depending on which of the four types of input and four types of output were being

used, tests were run with up to 10 channels of input and up to 27 channels of

output. There is enough similarity among the formulae for the open- and closed-

loop cases and between the continuous and discrete time cases that it was judged

sufficient to conduct this testing for the closed-loop continuous time case.

3.1. Test 1: Initial Implementation

In this test, the closed-loop continuous time transfer function T_,,T _, is calculated

using the initial implementation of the software. Several parameters are varied

in order to assess their effect on execution time of the software for the various

algorithms.

Cases were run using position measurements at each output, resulting in no

feedforward term, and using acceleration measurements at each output, resulting

in a feedforward term being present.

All algorithms used in this timing study are intended to be used to calculate

the frequency response matrix at multiple frequency points, so that the frequency

response may be plotted (as, e.g., Bode plots). They all have some calculations

which are done once per entry into the algorithm and other calculations which are

done once for every frequency point. To take this into account, all cases were run

over a range of 200 frequency points and most of them were rerun using 2000

points (the exceptions were the cases which would have required more than 5 days

of cpu time to complete). In all cases, the points were logarithmically distributed

between frequencies of .01 and 10000 radians per second.
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The executions times of test codes are compared on 12 representative problems.

Three different plant sizes were used: a small plant with 1 input, 1 output, and

61 states (24 structural and 39 controller states); a medium plant with 3 inputs,

5 outputs, and 221 states (184 structural and 39 controller states); and a large

plant with 10 inputs, 27 outputs, and 1445 states (1406 structural and 39 controller

states). For each plant size, two different sets of outputs were used: one with no

feedforward term (i.e., no acceleration outputs were used as performance outputs)

and one with feedforward. The frequency response function of each of these 6

plants was calculated at a short (200 values) vector of frequency values and at a

long (2000 values) vector of frequency values.

3.1.1. Software Used in Test 1

In Test 1, two software realizations of the closed-loop frequency response

function algorithm discussed earlier are compared to two software realizations

of previously available algorithms for the calculation of transfer functions.

The algorithm presented in this paper is programmed both as a MATLAB func-

tion M-file and as FORTRAN 77 code which is then accessed through MATLAB

using the MEX-file external interface facility. These will be called, respectively,

the new M-code and the new MEX-code.

One of the programs used for comparison makes use of the algorithm in [1]

and [2]. The FORTRAN code in [2] is in single precision; Laub's own double

precision FORTRAN code is imbedded in the software package FREQ ([19]) and

was used here. This test code is purely in FORTRAN 77. It will be called the

old FORTRAN code.

Preliminary testing indicated that, in order to get a reasonably well-conditioned

matrix for the sI - A expressionin the Laub code, it was necessary to exercise the

built-in option of balancing the .4 matrix. The unbalanced matrix was particularly

ill-conditioned at low frequencies. This can be attributed to the presence of the

rigid body (0 frequency) modes. In the Laub code, balancing was coupled with

the extraction of the eigenvalues of .4. As Laub wrote this code, the same value

of the input flag which signaled the code to balance the .4 matrix also signaled the

code to extract its eigenvalues. For purposes of timing tests here, the Laub code

was modified so that the portion which extracts eigenvalues was bypassed.

A second program used for comparison is the MathWorks M-file freqre.m, an

undocumented utility routine in the Robust Control Toolbox, [20], which calculates
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(to quote the on-line program preamble comments) "Continuous complex frequency

response (MIMO)". This will be called the old M-code. Once again, to achieve

reasonable accuracy, it was necessary to balance .4. This was done using MATLAB

built-in routine balance.

3.1.2. Timing Comparisons

Particularly on the larger plants, the new algorithm performs dramatically faster

than the older programs. This should not be taken as an indictment of the older

algorithms. The older algorithms were designed for arbitrary plants while the new

takes full advantage of the particular pattern of sparsity which results from using

the modal model of a flexible structure. On the other hand, when the new algorithm

is applicable, it enables analysis of structures of much larger order than would be

practical or even possible before.

Table 1 gives the time in seconds to calculate the frequency response function

using each of the 4 test routines for each of these 12 cases (except that the old

M-code does not attempt the two largest cases).

One conclusion to be drawn from this table is that the timing values returned

by the system timing software are not totally consistent with each other. The

computations by first three software packages include an up front check to see if

feedforward is present. The bulk of the code is executed whether feedforward is

present or not. If feedforward is present, additional code is executed which should

take additional time. But in 9 of 18 cases, the table shows the feedforward case

taking less time than the one without.

That said, there are still significant trends to be observed in this timing data. The

new MEX-code is significantly faster than the new M-code; in the more important

larger cases, about 3 times as fast. This justifies the effort of rendering the algorithm

in FORTRAN and writing the interface necessary to access it through MATLAB.

Comparing the new MEX-code, which is FORTRAN based, with the old

FORTRAN code shows that for the small system, the old code more than holds its

own. This is not unexpected, since in the small system, the controller dominates

the count of states. Thus, there is relatively little sparsity from the structural part

of the plant of which the new MEX-code may take advantage. But even in the

medium size case, the new code is 4 to 7 times faster than the old. This is getting

near the size at which conventional numerical analytic wisdom would place the

limits of applicability of the old, full matrix based, technique. For large cases,
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the new MEX-code is about 40 times faster than the old FORTRAN code. Since

the CPU time for the old FORTRAN code is expected to grow quadratically with

the number of system states, while that of the new technique is expected to grow

only linearly, it is not surprising that the difference between them in the largest

example is so great.

In what is called here the old M-code, MathWorks actually used M-files for

outer loop logic control to drive a built in function, ltifr. This function calculates

the matrix G whose columns are (_(i)I - A)-lb where .s. is a vector of complex

numbers (set in the present application to j_c, where j2 = -1 and _, is a vector

of frequencies), A is a system matrix (set in this application to .4), and b is a

column vector (set in this application to a column of the B,, matrix). The on-

line help for lt:ifr states that it "implements, in high speed" what the user could

calculate by looping through the elements of s and building G one column at a

time. Despite this, it is only competitive on the smallest system, and then only

against the new M-code which utilizes MATLAB built-in functions only at the

more primitive level of basic matrix operations.

All of the algorithms tested have some "once per entry" calculations in addition

to the calculations which occur once per frequency value. Thus, the time for the

2000 point calculations should never be more than 10 times that for the 200 point

calculations. In Table 1, there are several exceptions to this. This reinforces the

previous remark that the numbers returned by the computer system timing routines

are, at best, approximate. However, from looking at the largest case, it can be

reasonably concluded that the "once per entry" overhead is fairly small in both

realizations of the new algorithm while being substantial in the old FORTRAN

code, at least for large systems. This is expected, since for a system of order

(all other parameters being held fixed), the "once per entry" overhead in the old

FORTRAN code includes the initial reduction of the system matrix to Hessenberg

form which takes O (n 3) FLOPs, while the "per frequency point" calculation takes

0(,_ 2) FLOPs.

3.1.3. Accuracy

No formal error analysis has been performed on the new algorithm. There is,

however, numerical evidence to support the thesis that the new algorithm is more

accurate than the older techniques, particularly when applied to larger systems.
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Outputs from the four algorithm realizations were compared. For each fre-

quency value, individual entries in the frequency response matrices computed by

the four codes were compared using a symmetric relative error: The discrepancy

between complex numbers l/ and ( (not both 0) was measured by

t,/-
m(,J.C)= .5(I,Jl+ I<1)

e symmetric relative error uses the average magnitude of the two numbers being

compared. It is intended for use in comparing two numbers neither of which was

known to be correct.

This error measure ranges from a minimum of 0 to a maximum of 2. A

value of _(_j, _) near 10-" indicates that _/and _ agree to about _ decimal places

while /g(_/-_) > .1 indicates anything from rough approximation (near .1) to no

correlation (bigger than, say, 1). For each fixed frequency, the worst discrepancy

over all possible input-output pairs was observed.

The size of the discrepancy between the frequency response function matrices

computed by these codes was observed to depend not only on which two of the

codes were being compared but also on the size of the system, the frequency, and

whether or not feedforward was present. It would take too much space to present

details of these comparisons. However, some general statements can be made.

For each of the test problems (corresponding to one row of Table 1), the results

produced by the four codes were compared two by two. The overall best agreement

between any pair of calculations came from comparing the outputs of the new

MEX-code and the new M-code. At worst, these agree to within 7 decimal places.

This generally improves with reduction of system size or increase in frequency so

that best agreement is within machine accuracy. No other pairing, either between

one of the new codes and one of the old or between the two old, ever showed

noticeably better agreement, and in general the agreement was much worse. Often,

results from comparing the two new codes showed that the agreement of their

computations was better than that of any other pairing by at least 2 decimal places.

In the largest system, this advantage could increase to 5 decimal places, particularly

for small frequencies or when no feedforward was present.

Thus, two dissimilar implementations of the new algorithm produce results in

good agreement. When a parallel process is applied to the older algorithm, the two

dissimilar implementations produce results which are not in such good agreement,

either with each other or with those of the new algorithm.
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To provide further evidence that the results of the new algorithm are more

accurate, the old FORTRAN code was translated to quadruple precision from its

native double precision and was run (at a time penalty of about 32×) on the medium

sized problem using no feedforward and 200 frequency points. The output from

this showed the same degree of agreement with the output from the new codes as

they showed with each other.

These results combine to indicate strongly that the new algorithm provides

more accurate results than those previously available. There are theoretical grounds

for expecting this. The old way requires the solution of linear systems with the

coefficient matrix ._I - A which is usually of large order. It also had conditioning

problems which balancing ameliorated, but did not totally eliminate.

In the new algorithm, the coefficient matrices involved in the solution of linear

systems are A, which has the same order as the controller, and ._I - A/, which is

of order 2, for i = 1,..., p. Particularly when dealing with a large order structural

model, the coefficient matrices used by the new algorithm are much smaller than

the matrix .sI - A used by the old, so there is much less opportunity for round-off

error. Any conditioning problems coming from the interaction of the frequency

represented by ._' = j_.' and the i-th structural mode in the old method is isolated

in the new method to calculating the denominator term _,_ - _2 + 2j(i_'i_; in

equation (29); and this only gives numerical problems if .J is so close to .:i that

truncation occurs in forming the difference, and (i is so small that the (small) real

part _ - _2 is a significant part of the whole term.

3.2. Test 2: Current Implementation

In Test 2, seven different closed-loop continuous time transfer functions are

calculated using the current implementation of the software. It was deemed

unnecessary to consider as many combinations of the parameters as was done

in Test 1.

As noted in §2.11.2, the 16 closed-loop continuous transfer functions are

calculated using one of five MATLAB M-files. Two of the five accept feedthrough

matrices as an optional parameter and conditionally perform calculations which

depend on the feedthrough matrices. The seven test cases are chosen so that all

five M-files are exercised, and the two which accept feedthrough matrices are

exercised both with and without the optional feedthrough matrices.
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It was decided that the phenomenon of algorithm start-up time was adequately

examined in Test 1. So, in Test 2, a 301 point frequency vector with the points

distributed logarithmically between frequencies of.01 and 10000 radians per second

was used for all cases.

Linear systems with two different numbers of state variables were used in

calculating each of the seven transfer functions; one had the same number of states

as the medium plant of Test 1 with 221 states (184 structural and 39 controller)

and the other had the same number of states as the large plant of Test 1 with

1445 states (1406 structural and 39 controller). The numbers of inputs and outputs

and the presence or absence of feedforward depended on the individual transfer

function and are given in the following chart:

Feedforward
Transfer function Number of inputs Number of outputs

present

Tyr 6 6 no

Ty., 10 6 no

Zyv, r 6 27 yes

Type., 10 27 yes

Tcr 6 6 no

Tu_ 6 3 no

T.d 3 3 no

3.2.1. Software Used in Test 2

In this study, two software realizations of the closed-loop continuous time

frequency response function calculation algorithm given in this paper are compared

to two software realizations of previously available frequency response function

calculation algorithms and to one special purpose linear equation solver.

As noted in §2.11.2, the current software implementation of the calculation of

the 16 closed-loop continuous time transfer functions is programmed as a collection

of six MATLAB function M-files. These will be referred to as the new M-code.

Minor modifications of these M-files are then translated into computer code in

the C programming language using the MATLAB Compiler. The C code is then

compiled into a MATLAB MEX-file using the MATLAB script e=ex. This will

be called the new MEX-code.

40



The same old FORTRAN code and old M-code used in Test 1 are used here

for timing comparisons. Also, a special purpose linear equation solver due to

W. Govaerts and J. D. Pryce [21] is used for both timing comparisons and accuracy
assessment.

The Govaerts-Pryce (GP) algorithm assumes that the user has a matrix and

further that the user knows how to solve linear systems using both that matrix

and its transpose as the coefficient matrix. GP further assumes that what the user

really wants is to solve linear systems using a larger matrix formed by adding some

rows and columns to the given matrix. By using information from user provided

solutions to linear systems with the smaller matrix and its transpose as coefficient

matrices, GP calculates the solution to the larger system.

In Test 2, GP is used to calculate expressions of the form (.7.1 ._)- 1- B (see

§2.7). The block structure of the coefficient matrix .sI-A shown in equation (36) is

used. It is easy to solve equations using the upper left comer EI_ (.7.) or its transpose

as a coefficient matrix since Ell(.s) is block diagonal with 2 x 2 blocks. Since

the GP calculation is being included in the comparisons primarily as a baseline

for accuracy checking, equations with these 2 × 2 blocks or their transposes as

coefficient matrices are solved using full pivoting Gaussian elimination, which is

at least as accurate as the Cramer's rule based solution process given in equation

(27) for use in implementing the present algorithm.

3.2.2. Timing Comparisons

First, take note of comparisons which will not be made. Tests 1 and 2 were

made about 2 years apart. While they were made on the same computer, there were

subsequent hardware and software upgrades to the computer. This means that,

even if the tests had been identical, the results would not have been comparable.

Furthermore, while the same data set is used to generate test cases for both tests,

none of the 12 cases used in Test 1 exactly matches any of the 14 cases used in

Test 2. So, no comparison will be made between actual running times of any of

the Test 1 cases with those of any of the Test 2 cases.

Evaluating seven different transfer functions using systems of two different

sizes for each gives a total of 14 test cases. These cases were evaluated using the

software described in the previous section with the exception that the old M-code

was not applied to the large systems since this would have taken an unreasonable

amount of computer time. The cases using M-code or MEX-code were timed
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using the MATLAB built in function cputime. The old FORTRAN code and the

GP code were timed using Sun FORTRAN timing function vTxrm. Results of the

63 individual timing runs are given in Table 2.

The current implementation of the algorithm continues to outperform traditional

software, with the degree of improvement increasing with the size of the plant. On

the medium sized test cases, the new M-code ran faster than the old M-code by a

median factor of more than 34, while the median speed up of the new MEX-code

over the old FORTRAN code was by a factor of more than 2.3. No attempt was

made to run the old M-code on the large cases. On the seven large cases, the new

MEX-code showed speed ups over the old FORTRAN code by factors ranging

from 42 to 235 (median, 153).

The new MEX-code still outperforms the new M-code. In the medium sized

cases, the median speed up of new MEX-code over new M-code is by a factor of

1.5 and in the large sized cases, the median speed up factor is 1.75. This speed

up is not as good as in Test 1.

The difference in speed up factors is probably attributable to the way in which

the respective MEX-codes were generated. In Test 1, the MEX-code was compiled

from handwritten FORTRAN code. In Test 2, the MEX-code was compiled from C

code which was generated from M-files using the comparatively recently released

MATLAB utility mee. So, the Test 1 code had a couple of advantages. It was

hand written, which has at least the potential of producing more efficient code than

an immature machine translation scheme. It was written in FORTRAN, and, in

the authors' experience, contemporary FORTRAN compilers seem to do a better

job of optimizing scientific calculation code than do contemporary C compilers.

The decision to use the automatically generated code instead of hand-crafted code

for the MEX-files in the current software implementation of the algorithm of this

paper was an economic one based on available man-hours.

Although testing with the Govaerts-Pryce code was included primarily to

assess the accuracy of the current implementation of the new algorithm, timing

measurements were taken. The new MEX-code was also faster than the GP code,

with median speed up factors of 8.9 for the medium sized plants and 40.6 for the

large plants. So, while the GP code takes advantage of the sparsity in the structural

plant matrix in its own way, the algorithm of this paper is still preferable for

computational speed. While the old FORTRAN code was designed for efficiency

in computing (full matrix) transfer functions at multiple frequency points, on the
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large plant, the GP code, with its exploitation of sparsity, was faster than the old

FORTRAN code by a median speed up factor of 3.78.

3.2.3. Accuracy

Numerical evidence from the results of Test 2 continue to support the thesis that

the new algorithm is more accurate, particularly on large problems, than traditional

transfer function calculation techniques. When Test 2 was made, the availability of

the GP software not only gave another independent calculation of transfer function

matrices for use in comparison, but also gave a new tool for generating a measure
of relative error.

As explained in Appendix B, the discrepancy between the results of calculating
a transfer function

-(T=C' ._'I-. B+ D

in two different ways is measured on a component by component basis relative to

the following quantity which will be called a comparison magnitude:

The challenging part of computing this comparison magnitude, the determination of

-_(.sI-.4)-'_ j,was accomplished using GP to solve the system of linear equations

having .sI- A as a coefficient matrix and the identity matrix on the right hand

side of the equation. All values for discrepancies and errors reported subsequently

are relative to this comparison magnitude.

As in Test 1, unless otherwise mentioned, all computations were performed in

64 bit ANSI standard floating point computer arithmetic, called "double precision"

on the Sun workstation used for this study. In Sun double precision arithmetic,

machine epsilon, the smallest number which, when added to 1 in computer

arithmetic, produces a result which is different from i, is 2 .52 which is about
2.2x 10 -16.

In order to judge the accuracy of the GP code on the test problems, a quadruple

precision (128 bit) version was created and exercised on the same test problems

(using every lOth frequency point; the median over the 14 test cases of computation

time per frequency point for quadruple precision was about 70 times that for double

precision). Except for the two test cases calculating T_,., the discrepancy between
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the double and quadruple precision results was never more than 10 -14 , and was

usually less than 10 -15 . Even in the exceptional cases, the discrepancy never

exceeded 10 -12 and was usually less than 10 -14 . Because of these comparisons,

the GP results were taken as the accuracy standard against which other results

were measured.
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Figure 4. Discrepancy between the transfer function values calculated

by the new MEX-code and the GP code, all test cases shown.

Of particular interest in this paper are results reflecting on the accuracy of the

algorithms developed herein. The two software realizations of that algorithm, the

new MEX-code and the new M-code, can be viewed as being compilations by two

different compilers of essentially the same code. It is expected that they would

give very similar results• Indeed, when compared, discrepancies between their

results were uniformly bounded over the 14 test cases by 10 -15 with a substantial
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proportion being identical. So, it is enough to judge the accuracy of the present

algorithm to compare the results computed by the new MEX-code to the results

computed by the GP code.

The 14 test cases each calculated transfer function matrices at 301 different

values of frequency. These matrices had dimensions ranging from 3 x3 to 10x27,

depending on the case. A total of 355,782 data points were generated. A scatter

plot showing the discrepancies between the values calculated by the new MEX-

code and those calculated by the GP code at all 355,782 data points is given in Fig.

4. Of those, 88.69% of the new MEX-code answers showed an error (compared

to the GP answers) of less than 10 -14, 99.65% showed an error of less than 10 -11,

99.984% showed an error of less than 10 -8 , and 99.987% showed an error of less

than 10 -6. The remaining 46 data points (.013%) showed errors of at least .01, with

the worst case discrepancy being 2.8x 1017. These errors were troubling enough

to warrant further investigation. Results of this investigation are reported at the
end of this section.
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Figure 5. Transfer function matrix element Tp,.(13, 2) for the

large plant calculated by the new MEX-code or the GP code.

The transfer function matrix element TI,_. ( 13, 2) for the plant with 703 structural

modes is a typical result of these calculations. A Bode plot of this transfer function

as calculated by the new MEX-code or the GP code is shown in Fig. 5. The same

plot can be shown for both calculations since the discrepancy between them, as

shown in Fig. 6, is below the plot resolution.
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Figure 7. Transfer function matrix element Tp,.( 13, 2) for

the large plant calculated by the old FORTRAN code.

With respect to accuracy, the old FORTRAN code and the old M-code showed

very similar accuracy behavior, so only the old FORTRAN code will be discussed.

For two of the transfer functions, Ty_,, and Tpw, accuracy of the old FORTRAN

code was adequate, with errors of 10 -7 or better. However, for the remainder of

the transfer functions, the accuracy results were frequency dependent. Accuracy

was good to adequate for frequencies between .01 and 1 rad/s. It then tended to

degenerate as frequency increased from 1 to 10, then ramped up sharply so that

when frequency reached 104 rad/s, the size of errors ranged from 108 to 1036.
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Observe the same transfer function matrix element Tp,. (13, 2) for the same plant

which was considered in connection with calculations using the GP and MEX-

codes. A Bode plot of this transfer function as calculated by the old FORTRAN

code is shown in Fig. 7. Over the last decade of frequency values, this plot diverges

noticeably from the plot in Fig. 5. The magnitude of the discrepancy between these

two calculations is shown in the scatter plot in Fig. 8.
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Figure 8. Discrepancy between the transfer function matrix element Tp,.(13, 2)

for the large plant calculated by the GP code and the old FORTRAN code.

The exceptionally large errors.

Recall that a small fraction of the new MEX-code calculated data points, 46

out of 355,782 or .013%, showed errors of at least 0.01 when compared to the

GP code calculations. The worst case discrepancy was 2.8× 1017. This point was

truly exceptional. The next worst discrepancy was less than 1.6× 102, and only a

total of 7 errors were more than 1.

These larger errors occurred in several different transfer function evaluations

(TFr, T_,., T,r, and Tud ), but all in cases involving the 703 mode structural model,

and all at the same frequency, 794.3282 rad/s. The worst error occurred in the (1,4)

position of the transfer function matrix T,r, so it was chosen for further analysis.

Recall, Eq. (53), that

=

The baseline Bode plot for the transfer function matrix element T,r(1,4) for

the large plant as calculated by the GP code is shown in Fig. 9. When the same

calculation is done by the new MEX-code, it results in the Bode plot shown in Fig.
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for the large plant calculated by the GP code.
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Figure 10. Transfer function matrix element Tur(1,4)

for the large plant calculated by the new MEX-code.

10. The numerical problem shows up as a spike on the magnitude plot at about 800

rad/s. It can also be seen in the scatter plot of discrepancies between these two

calculations shown in Fig. 11, where the exceptionally bad point is emphasized

with an x.

Again, this is the exceptionally bad case. The spike on the next two worst
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Figure 11. Discrepancy between the transfer function matrix element T,,. (1,4)

for the large plant calculated by the GP code and the new MEX-code.

cases would be about 1/8 as tall as this one, with the next worse after that being
about 1/16 as tall.

The calculation of T,,.(1,4) was repeated using the new MEX-code and the

GP code and a grid of 30,001 points; i.e., 100 times the sampling density of the

previous calculation. The error occurred at other points of this finer grid, but

all close to the point already discovered. A detail plot of this area covering all

additional erroneous points is shown in Fig. 12. The points from the magnitude

plot of Fig. 10 are marked here with an x. The baseline GP calculation is plotted

using a solid line, the new MEX-code calculation using a dotted line. Additional

error points were found; the magnitudes of errors were all about the same and the

frequencies at which they occur were limited to the range from about 750 rad/s

to 810 rad/s.

The actual calculation of T,,.(.s) was being done by a MATLAB statement of
the form:

>> T = CC*(DELTA\Bc);

Here, the MATLAB variables cc and Be hold the values of the matrices C'c and

Bc, respectively, while the MATLAB variable D_.r._A holds the value of the matrix

_(.s) with s = 794.3282j. The (1,4) element of T,,. can be considered as being

the result of the MATLAB calculation

>> T(1,4) = c*(DELTA\b);

where c is row 1 of cc and _, is column 4 of Be. A wide range of magnitudes was

observed in this calculation. The calculated values in the column vector D_.r._,\b

varied over about 47 orders of magnitude. When the product e* tD_.r.TA\b) was

49



100

-100

.o
-o -200

-300
r

-400

-500

-600

× new MEX-code, coarse grid

..... new MEX-code, fine grid

-- GP code, f ne grid

i? _i!

i! .-

_ i! !!

-70_0 .....0 750 800 850 900

frequency, rad/s

Figure 12. Detail of fine grid calculation of transfer

function matrix element T,,(1,4) for the large plant.

formed, zeros in the row vector e canceled out elements of the top 16 orders

of magnitude in D_.r.T_,\b. Thus, for T (4, z) to be accurate, small components of

D_.r,TAkb needed to be computed accurately, and in the case under study, this did

not happen.

Several experiments were conducted to see if improving the linear equation

solution process implicit in the MATLAB computation D_.LT_,\BC would give values

of T,,. which agree with the GP solution. Two were successful at all but one data

point; that one data point being the same (1,4) element of T,_. at frequency 794.3282

rad/s considered previously. When two cycles of iterative improvement were used

to improve the accuracy of the computed value for A-IBc, except for the one

point noted, the results came into agreement with the results produced by the GP

code. The same agreement was achieved when A-IBc was computed using the

linear equation solution subroutine ZG_.SVX from LAPACK [15]. Even for the one

bad point, the error decreased from 2.8× 1017 to 2.0× 102. So, the problem of the

few inaccurate points was traced to numerical behavior of the MATLAB linear

equation solver and could generally be relieved by using a more robust linear

equation solver to calculate expressions involving A -1

When the complete suite of tests was recalculated with the new MEX-code

modified to use LAPACK subroutine zo_.svx for all computations involving A-l,

the discrepancies of the results, when compared to those of the GP code, are shown
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Figure 13. Discrepancy between the transfer function values calculated by the

new MEX-code with ZGESVX and the GP code, all test cases shown.

in Fig. 13. By comparing this figure to Fig. 4, it can be seen that not only has

the worst point improved and the rest of the violators of the 10 -2 relative error

magnitude line been reduced to levels consistent with the GP results, but also there

has been a general improvement in accuracy in the lower frequencies. The down

side to the accuracy improvement using zop.svx is that the median time over the

14 cases to calculate the transfer function matrices using zo_.svx is 1.7 times that

of using the MATLAB matrix division operator.

It was also observed that this phenomenon occurred at a frequency where the

affected transfer function values had experienced a large amount of roll-off. From

a point of view of engineering analysis, even if these inaccuracies remained in
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the calculation, they would probably have no impact on any engineering decisions

made on the basis of this calculation.
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4. Concluding Remarks

An efficient and novel procedure has been developed for the calculation of the

frequency response function of a large order, flexible system implemented with a

linear, time invariant control system. The procedure takes advantage of the highly

structured sparsity of the system matrices of the plant in normal mode coordinates.

This reduces the computational cost from a quadratic function of the order of the

system to a linear function, thereby permitting the practical frequency analysis of

systems of much larger order than by traditional, full-matrix means. Formulations

have been given for both open and closed-loop systems for both continuous time

and discrete time formulations.

Numerical examples were presented wherein the advantages of the present

algorithm over traditional approaches, both in speed and in accuracy, have been

demonstrated. When the initial software implementation of the algorithm was

exercised on the largest systems, the MATLAB MEX-file based on a FORTRAN

implementation of the new algorithm (the new MEX-code) was about 40 times

faster than the old FORTRAN code when many frequency points were used while

the advantage increased to a factor of about 80 or better when the calculation

involved few frequency points. In this latter case, MATLAB M-files based on

the new algorithm (the new M-code) was over 200 times faster than the old

M-code. On the largest systems, the current MEX-code implementation of the

algorithm, C language code generated automatically from MATLAB M-files by

the MathWorks mcc, was faster than the old FORTRAN code by factors ranging

from 42 to 235 depending on which input/output pair and transfer function matrix

size were chosen. Even though the Govaerts-Pryce (GP) code, which was used

for an accuracy baseline, took advantage of the same sparsity in the plant system

matrix as did the new MEX-code, the new MEX-code was faster than the GP code

by a median factor of 8.9 for medium sized plants and by a median factor of 40.6

for large sized plants.

In this study, the standards of accuracy were set by the GP code. With only

a tiny number of exceptions (0.013% of all data points), results calculated by

the new MEX-code and the new M-code agreed with the GP code results to at

least 8 decimal places. The exceptionally large errors were traced to problems

experienced by the MATLAB linear equation solver with certain of the A matrices

for coefficient matrices. By contrast, at a substantial fraction of data points, the

results of the old FORTRAN code and the old M-code disagreed with those of the
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GP code by totally unacceptable error amounts, with discrepancies ranging up to

many orders of magnitude.
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Appendix A: Faster Calculation of CcA-I(s)Be

The expression CcA-l( s)Bc occurs (directly or indirectly) in the formulae for

all 16 of the closed loop transfer functions presented in this paper. If standard full

matrix techniques are used to calculate this expression (the product A -l (._)Bc is

calculated by solving a linear system with A(._.) as the coefficient matrix and Be

as the right hand side and the calculation is completed by a matrix multiplication),

then the FLOP count for this calculation is O (k :3+ L"2f + kin f). This appendix

presents a technique which can be used to replace the L":_ term by k2'm if transfer

functions must be calculated at enough (order of k/(f + ir_) or more) different

values of .s.

First, some mathematical machinery must be developed; then it is applied to

this specific problem.

A.1. Solving Low Rank Modifications of Linear Systems

In this section, it is shown how to express the solution of one system of linear

equations in terms of the solution of another system of linear equations whose

coefficient matrix is a low rank perturbation of the coefficient matrix of the original

system. The conventions which have been established in this paper for the use of

symbols are suspended for the remainder of this section in favor of:

Notation:

I

All other capital letters

:r and y

All other lower case letters

Identity matrix of size appropriate to context

Matrices over some field

vectors over some field

Positive integers

The results of this section are valid for matrices with entries from an arbitrary

field. For engineering purposes, the most important fields are the real and complex

number fields.

In this section, A represents an arbitrary non-singular matrix. The results of

this section are most useful when A has the property that linear systems using A

for a coefficient matrix can be solved more easily than would be the case for an

arbitrary matrix of the same size as .4. For example, A could have a known LU
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decomposition (factorization into lower triangular and upper triangular matrices),

A could be block diagonal, or (the case of interest in this paper), A could be upper

Hessenberg (i.e., .4 is zero below the first subdiagonal).

The main result of this section depends on a lemma.

Lemma: Let A be a non-singular k × k matrix, and let R and S be k × r matrices.

Then, A 4- RS T is non-singular if and only if I + STA-_R is non-singular.

Proof: Both parts of the "if and only if" will be proven by contradiction.

Suppose that A -4- RS T is singular. Then, there exists an x _- 0 for which

(.4 + RsT)a'= O. Then, Ax = R(-sT,,'). Since A is non-singular, A.r_ O, and

so -ST,r _ O. If I + STA-JR is applied to this nonzero vector, the result is O:

= -ST.r + S T.r = 0

This demonstrates that I + STA-iR is singular. This establishes the "if" portion

of the Lemma.

Now, suppose that I+sTA - 1R is singular. Then there exists a y _ 0 for which

(I + STA-IR)9 = 0. Then, y = ST(-A-_Ry). Therefore, -.4-1Ry ¢- O. If

A + RS T is applied to this nonzero vector, the result is 0:

= -Ry + Ry = 0

This demonstrates that A + RS T is singular. This establishes the "only if" portion

of the Lemma. []

The Low Rank Modification Theorem for Solution of Linear Equations, which

is also a corollary to the Sherman-Morrison-Woodburyformula [6, p. 51] or [22,

124], can now be stated:

Theorem: Let A be a L, × /,. matrix, R and S be/," × r matrices, and B be a

k × _n matrix. Suppose that A and A + RS T are non-singular. Then there exist a

k × r matrix Z and k × _r_ matrices Y and W satisfying, respectively, the equations

AZ = R, AI" = B, and (l + sT z) W = sT] ". Further, if X = _f" - ZW, then

X satisfies the equation (.4 + RsT)x = B.

Remark: Note that .4 + RS T is perturbed from A by a matrix of rank at most r.

This theorem says that one can solve _ linear equations with the order k coefficient
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matrix A +/?S T by solving m + 7 linear equations with the order k coefficient

matrix A and m linear equations with the order r coefficient matrix I + STZ. If

the matrix A has properties which allows one to solve equations with coefficient

matrix A more rapidly than those with coefficient matrix A +/?S T, and if r is

substantially smaller than k, and if m is not too large, then it might be significantly

more efficient to calculate X as X = ]'- ZTT" than to calculate X by solving

(A + RST)X = B directly.

Proof: The non-singularity of A insures the existence of Z and _" with the

stated properties. Since [ + sT z = [ + ST A - lT, the lemma insures that I + sT z

is non-singular, so there exists all" with the stated property. Let X = }" - ZIV.

It follows from the equation defining IIT that STZIV = sty - IV. Therefore,

= A}" - AZII _ + RsT}" -/?sTzII"

= B-RII T +/?sTj'--/?(sT}_--II" )

=B

[]

A.2. Application to Calculation of Cc A - 1 (8) B c

The idea presented by Alan Laub in [1, 2], as applied to calculating the transfer

function of the control system, would replace

•i'h = Ahd"h -l-

¢

U = ChX h

the control system equations (8) by

D h e

e : '1"-- y-- '*_'

where Ah = T-1AcT, Bh = T-aBe., and C'h =CcT; and T is an orthonormal

matrix chosen so that the matrix A h is upper Hessenberg (has zeros below the first

subdiagonal). Essentially, this just performs a change of basis in the controller

state space without changing the controller itself. The computational burden of

performing this transformation is O (k a) FLOPs, but it needs to be done only once

even if transfer functions are to be evaluated for multiple values of .s..

If this transformation is not done, then to calculate the transfer function of

the controller, it is necessary to evaluate (.sI- Ac)-lBc for each s. Computing
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this expression requires O(ka+ k2f) FLOPs. If, however, the transformation

is performed, then, along with A/,, ._I - Ah is also upper Hessenberg, and the

corresponding evaluation of (.2I - A1, )- 1Bc requires only O (k 2 f) FLOPs.

It was already suggested in the discussion of computing open-loop transfer

functions that this technique be applied to computing the open-loop expression

CcXee(.s)Bc = C'cETe.e_(s)Bc = Cc(.SI - Ac)-lBc = Ch(.2I - AI,)-IBh

Operationally, the simplest way to accomplish that is to replace the original

representation of the control system by its equivalent representation using an upper

Hessenberg "A" matrix.

The problem with calculating closed-loop transfer functions is that the open-

loop relation X2.2 = E221 is replaced, in the closed-loop case, by the relation

X22 = A-1 Now, recall from Eq. (40) that

:k(._.) = E22(._') -+-DcC',_EIII(.s)BrCc

Furthermore the rank of the term added to E22 to get A is at most rain (f, m).

It is now a small step to write '.._k = E22 + RS T where either R = Bc and

S 7 = Cs E l-lI ( .s) B_ Cc or R = BcC'_ Ei-l I (.2-)Bs and 5: = Cc depending on whether

f or _n were smaller, respectively; and apply the Low Rank Modification Theorem

for Solution of Linear Equations to the calculation of '-k-l(.s)Bc. If A_. is upper

Hessenberg, so that the solution of linear equations with coefficient matrix E2.2(s)

can be calculated substantially faster than for arbitrary k x k matrices, then the

calculation of A- l ( s)Bc will be accomplished with fewer FLOPs than if full matrix

techniques were used. The calculation of C,.,.X-I(,s)B_ is now completed with a

matrix multiplication.

A.3. Comparative Computational Complexity

In this section, the computational burden of computing C'cA-l(._)Bc by stan-

dard full matrix techniques is compared to the computational burden of computing

the same expression using the low rank modified Hessenberg technique of the

previous section. Specifically, FLOP count expressions will be developed for the

amount of calculation required to pass from the point at which C'_Ell ! (._.)B_ has

been calculated to the point at which the calculation of C',.A- I(._)B,. is completed.
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Full matrix FLOP count

In this FLOP count, it is assumed that Ac and, therefore, E22(s) = ,s.I- Ac
are full matrices.

The term BcC'_EIlI(._.)B_Cc can be calculated from C'_t?,II_(._.)B_ in

O(l_Jm + l(2m) FLOPs by doing the B_, multiplication first. The addition

of E22 to form A does not add significantly to the FLOP count. Calculating

a partially pivoted LU decomposition of A requires O(L 3) FLOPs. Using this

LU decomposition, the calculation of A-l(.s)B c can be completed in O(l_2f)

FLOPs. The matrix multiplication required to calculate CeA-I(.s.)Bc requires

O(kfm) FLOPs. Thus, the total FLOP count to calculate C'e,X-I(.s.)B,. from

C'_E-fII(._)B_ using full matrix methods is O(l, '3 + #2(f + m) + tf_). In the

expected applications of this algorithm, Z' is significantly larger than f or _, so

the dominant term of this FLOP count formula is O (L'3).

Low rank modified Hessenberg FLOP count

In this FLOP count, it is assumed that Ac and, therefore, E22(.s) = sI- .4_. are

upper Hessenberg matrices. The FLOP count will be based on applying the Low

Rank Modification Theorem for Solution of Linear Equations (LRMTSLE). These

expressions will be developed under the assumption that m _< f. If f < _, the

altemate expressions given earlier for R and S are used, and the roles of _ and

f are reversed in the FLOP count expression, but this does not alter the dominant

terms.

In order to express A in the form E2.2 + RS r needed to apply LRMTSLE, R is

taken to be the _: × m matrix BcC'_E-_)B_ at a computational cost of O(kf_), and

S T is taken to be Cc at no computational cost. Because E22 is upper Hessenberg,

the (now L' x m) matrix Z of LRMTSLE can be calculated as the solution to

the equation E.2.2Z = R in O(k2,m) FLOPs. The (now Lx f) matrix _" of

LRMTSLE can be calculated as the solution to the equation E223" = Bc in

O(L'2f) FLOPs. The matrices sTz and sTY needed to calculate ll" can be

calculated in O(L.,_ 2 + kin f) FLOPs. The calculation of the ,_ x f matrix ll" as

the solution of the equation (I + STZ) W -- S T)" must be done by full matrix

techniques. This requires O(m3+ fm 2) FLOPs. The matrix X of LRMTSLE,

which is A-l(s)Bc, is calculated as X = _'-ZII" in O(l,'fm) FLOPs. The matrix

multiplication required to calculate C_.A- l (s) Bc requires O (Lf m ) FLOPs. Thus,

the total FLOP count to calculate C'_.A-I(s)Bc from C'_E-_ll(.s)B_ using the low
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rank modified Hessenberg method is O (k 2(,,, + f) + k(f,,, + ,r_2) -t- f,,_ 2 + ,,_3).

In the expected applications of this technology, k is significantly larger than f or

m, so the dominant term of this FLOP count formula is O(/,'2(_ + f)). With

the expected values of the parameters, this is a significant improvement over the

full matrix formula.

This still leaves the question of how the total computation time is affected by

adding in the time necessary to reduce an arbitrary controller representation to one

in which the system matrix is in upper Hessenberg form. The general answer is

that if there are enough distinct frequency points over which to amortize the cost of

the Hessenberg reduction, then adding the cost of this initial reduction to the cost

of computing the transfer function for all frequency values still results in a cheaper

calculation than using the full matrix method. But, that brings up the question of

how many frequency points are enough. One answer to this is given by observing

that if there are k/(f + m) or more points, amortizing the dominant O(k :1) term

of the start-up cost over these points contributes an additional O (k2(f + i_ )) or

less to each. This absorbs into the existing dominant term. Another answer can be

given by using explicit FLOP counts given in [1]. The dominant term in the FLOP

count for the orthogonal Hessenberg reduction (the more numerically stable of two

techniques mentioned in [1]) is 5k:_/3. The dominant term in the FLOP count for

the full malxix solution method is k3/3. This suggests that the break-even point for

using the low rank modified Hessenberg method is that the calcuIation needs to be

done for at least five different values of ,s (i.e. at least five different frequencies).

In typical applications (such as making a Bode plot), there are many more than

five frequencies at which the transfer function is evaluated, so using the low rank

modified Hessenberg method Should give the answers with fewer FLOPs.
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Appendix B: Numerical Error Measurement:
The Data Relative Error

Numerical calculations are subject to many kinds of error. Typically, only a

fixed precision, a fixed number of decimal places or binary bits, are carried through

the calculation, so round-off becomes a source of error. If two nearly equal numbers

of a given precision are subtracted, the cancellation of high order digits or bits

results in an answer of lower precision. An algorithm which would, theoretically,

require infinitely many steps to arrive at the correct answer is terminated after only

a finite number of steps producing a truncation error. In a long calculation, such

errors can be cumulative, and can be magnified by ill conditioning of the problem.

In order to experimentally estimate the magnitude of such error in some given

calculation, one might find oneself comparing two numbers to see if they are close

together. For example, if one has performed a computation which is supposed

to have solved an equation, one might substitute the computed candidate for a

solution back into the equation, and see how close the left and right sides are. Or,

one might use two (or more) different algorithms to approximate the same result

and compare these approximations with each other. The question then is whether

two numbers are "close" to each other.

There is no absolute answer to this question. For example, the absolute error

between 15,995 and 15,999, i.e., the magnitude of their difference, is more than

the absolute error between .0011 and .0023. But most people would judge that

the numbers of the first pair are almost the same while the numbers of the second

pair are substantially different. This is based on looking at the relative error, the

absolute difference of the numbers relative to some appropriate magnitude such as

their sizes. The symmetric relative error measure, 6, introduced in §3.1.3, reflects

this judgement, since _(15995, 15999) _ 0.00025 while _(.0011, .0023) _ 0.71.

The problem in calculating a relative error between two numbers becomes one

of finding the comparison magnitude, a quantity of an appropriate magnitude to

which the absolute error may be compared. If one of the numbers is known to be

the correct one, and it is not zero, then its magnitude may be used; this is what is

commonly known as relative error. The symmetric relative error uses the average

magnitude of the two numbers being compared. It is intended for use in comparing

two numbers neither of which was known to be correct.
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However, 6 is not always a good measure of whether two numbers which are

supposed to be approximately the same really are. For example, suppose .,-_ is an

approximate (e.g., calculated) solution to the simple scalar linear equation a.t" - b

which can also be written aa'- b = 0. If.r. is substituted into either of the equations

for which it is supposed to be a solution, one expects the left and right sides to

be close to each other. Suppose that the result of the machine calculation a.r. is

not exactly b, and suppose that 6 is used to measure this closeness. Using the first

equation, the closeness will be measured as _(aa',_, b), which will probably be on the

order of machine epsilon. However, using the second equation, the closeness will

be measured as 6(a:r. - b, 0) - 2, which is the maximum measure of discrepancy

which the symmetric relative error measure can return. This second test has given

a false sense of the quality of .r. as a solution to the equation a:u- b -- 0.

A problem with trying to measure how good an approximation a,. is as a

solution to the equation a.v - b = 0 using ¢s(a.rr_ - b, O) is that this symmetric

relative error calculation does not take into account the magnitude of the data

which went into calculating :vo. One way to take data size into account would be

to measure the error relative to the size of the constant term b. As long as b # O, the

relative error measure becomes la.r, - b[/[bl; the error is being measured relative

to the magnitude of the constant term of the equation.

This actually gives a good indication of how close the residual a:v, - b is to

0. However, if the scalar equation a.r = b is replaced by a system of equations

represented in matrix-vector form as A.r = b, the natural extension of this relative

error measure may not give such a good idea of whether all components are near

O. This extension would be to take IlAa'_- bll/llbl[ as a measure of the error,

where a,, is again an approximate (e.g., computed) solution to the equation and

11.]1 represents some vector norm. This error measure can be viewed as looking at

the component by component size of the residual -4:ra - b relative to Ilbl[. This

measure gives an accurate idea of the size of those components of the residual

corresponding to the large components of b (i.e., those components of b which

contribute significantly to llbll). However, some small components of b may be

poorIy approximated by the corresponding components of .4.,',, without this error

being reflected in the error measure ll.4.r. - bll/llbll. Using IIb]] as a comparison

magnitude has masked the error in these small components. If one attempts to

regain the lost information by looking at the size of each component of the residual

vector relative to the magnitude of the corresponding component of b, one runs

the risk of overestimating the error represented by components of the residual

62



corresponding to small components of b (to see the extreme case, imagine that

some components of b are zero).

This motivates the introduction of the notion of the data relative error. This

is an error measure which is made on a component by component basis relative

to comparison magnitudes which are based on all the data which went into the

calculation of each component. In its ideal form, it is applicable to any arithmetic

calculation producing a number which is theoretically supposed to be zero. For

example, once an approximate solution ,r_ to a linear system of equations A._" -- b

is known, the calculation .4.,'c_ - b of the residual has these properties. A calculation

is made parallel to the calculation which produced the "should be zero" quantity. In

the parallel calculation, each datum originally used is replaced by its absolute value,

and all subtractions are replaced by additions. For the linear equation example, this

parallel calculation is ].411:r, 1+ It, I, where all absolute values are taken component

by component.

Every individual scalar result x of the original calculation has its counterpart

> 0 in the parallel computation, and (at least in exact arithmetic) I, 1-< The

magnitude of ( reflects the magnitude of the data which went into the calculation

of :, and gives an upper limit on what magnitude the answer could possibly have

based on the form of the calculation. The calculation of _ does not take into

account any cancellation, such as by the subtraction of nearly equal quantities,

which might have occurred in the calculation of .e. So, if _ > 0, the ratio

gives a reasonable idea of how close x is to 0 by comparison with the data from

which it was calculated and what the calculation process could potentially do to

that data.

Unfortunately, the amount of programming necessary to calculate this ideal data

relative error can be too large to be practical. For example, if T (') (s, A,/3, C,/9/
\ ]

and T (b) (.s', A,/3, C,/9) represent the results of computing the transfer function
\ ]

- /3 +/9 in two different ways, then the quantity which is supposed

to be close to zero is

Computing the ideal data relative error would involve rewriting all of the software

involved in calculations (a) and (b) to include parallel upper bound computations.
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For purposes of Test 2 in this paper, a compromise was adopted. The compar-

ison magnitude was taken from the computation

The programming effort required to adapt the GP software to calculate /(.s'I - ._)-1.,

was moderate; the computational time to calculate the inverse was reasonable;
J

and the results were reliable, even when the order of the matrix was 1445. The

remainder of the calculation was routine.

This comparison magnitude no longer has some of the properties of the ideal.

For example, even if it were doubled to provide contributions for both transfer

function calculations, the inequality I,,.1_< between an individual calculated

number and its comparison magnitude no longer necessarily holds. This is because

._I- A is not an ideal comparison magnitude for ,sI- _4 -1. And

the compromise comparison magnitude does not necessarily refer to the actual

algorithms used in computing either T (c') or T (b). Despite this, the compromise

comparison magnitude performed very well in assessing questions of accuracy in

the present study.
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Table 1. Time (seconds) to Calculate Frequency

Response Function Using Original Implementation

System Freq. Feed- New New Old FOR-
size a vector forward MEX- M-code TRAN

length present code code

Old

M-code

1/1
200 No 1.98 11.18 1.26

24+39

1/1
200 Yes 2.47 13.50 1.10

24+39

1/1
2000 No 24.78 108.87 10.08

24+39

1/1
2000 Yes 19.60 135.20 10.36

24+39

3/5
200 No 5.03 18.53 29.84

184+39

3/5
200 Yes 3.85 14.18 27.50

184+39

3/5
2000 No 46.08 147.00 213.69

184+39

3/5
2000 Yes 35.77 188.93 200.09

184+39

10/27
200 No 60.40 231.25 5714.94

1406+39

10/27
200 Yes 73.77 227.40 5756.99

1406+39

10/27
2000 No 591.50 1922.75 24928.01

1406+39

10/27
2000 Yes 615.73 1897.22 24929.14

1406+39

7.57

7.62

71.18

71.92

287.93

290.25

2818.78

2830.32

49846.62

49199.20

a In "m/n" in the first line, "m" is the number of inputs and "n" is the number of outputs.
In "re+n" in the second line, "m" is the number of structural states and "n" is the number of controller states.
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Table 2. Time (seconds) to Calculate Frequency

Response Function Using Current Implementation

Tran sfer

function

Number New Old FOR-
New Old

of system MEX- TRANM-code M-code
states code code

GP code

Zffr

TU {I"

Tffpr F

Z_pr _f,

T_r

T.r

Tyr

Zy W

ZIJl)r I"

Tgpr tt'

T,r

T.r

T.,1

221 14.26 21.48 37.64

221 21.74 33.04 50.58

221 17.16 27.89 38.97

221 30.00 45.87 53.93

221 14.47 21.50 35.88

221 13.46 20.23 36.52

221 14.48 22.03 27.37

1445 27.27 46.97 5218.06

1445 83.86 142.43 5859.32

1445 45.37 87.68 5436.88

1445 141.63 257.97 6052.90

1445 27.34 47.78 5377.79

1445 22.05 42.72 5196.56

1445 30.58 51.21 4664.98

738.15

1232.54

764.57

1278.97

738.83

731.16

368.50

142.52

153.31

145.58

158.49

142.71

142.49

129.09

1413.02

1550.30

1415.65

1551.37

1407.49

1422.89

1240.30
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